1. 문제

N개의 수가 주어졌을 때, 이를 오름차순으로 정렬하는 프로그램을 작성하시오.


2. 입력

첫째 줄에 수의 개수 N(1 ≤ N ≤ 1,000)이 주어진다. 둘째 줄부터 N개의 줄에는 숫자가 주어진다. 이 수는 절대값이 1,000보다 작거나 같은 정수이다. 수는 중복되지 않는다.


3. 출력

첫째 줄부터 N개의 줄에 오름차순으로 정렬한 결과를 한 줄에 하나씩 출력한다.


4. 풀이





1. 문제

1보다 큰 자연수 중에서  1과 자기 자신을 제외한 약수가 없는 자연수를 소수라고 한다. 예를 들어, 5는 1과 5를 제외한 약수가 없기 때문에 소수이다. 하지만, 6은 6 = 2 × 3 이기 때문에 소수가 아니다.

골드바흐의 추측은 유명한 정수론의 미해결 문제로, 2보다 큰 모든 짝수는 두 소수의 합으로 나타낼 수 있다는 것이다. 이러한 숫자를 골드바흐 숫자라고 한다. 또, 짝수를 두 소수의 합으로 나타내는 표현을 그 숫자의 골드바흐 파티션이라고 한다. 예를 들면, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7, 14 = 3 + 11, 14 = 7 + 7이다. 10000보다 작은 모든 짝수 n에 대한 골드바흐 파티션은 존재한다.

2보다 큰 짝수 n이 주어졌을 때, n의 골드바흐 파티션을 출력하는 프로그램을 작성하시오. 만약 가능한 n의 골드바흐 파티션이 여러가지인 경우에는 두 소수의 차이가 가장 작은 것을 출력한다.


2. 입력

첫째 줄에 테스트 케이스의 개수 T가 주어진다. 각 테스트 케이스는 한 줄로 이루어져 있고 짝수 n이 주어진다. (4 ≤ n ≤ 10,000)


3. 출력

각 테스트 케이스에 대해서 주어진 n의 골드바흐 파티션을 출력한다. 출력하는 소수는 작은 것부터 먼저 출력하며, 공백으로 구분한다.




4. 풀이




1. 문제

베르트랑 공준은 임의의 자연수 n에 대하여, n보다 크고, 2n보다 작거나 같은 소수는 적어도 하나 존재한다는 내용을 담고 있다.

이 명제는 조제프 베르트랑이 1845년에 추측했고, 파프누티 체비쇼프가 1850년에 증명했다.

예를 들어, 10보다 크고, 20보다 작거나 같은 소수는 4개가 있다. (11, 13, 17, 19) 또, 14보다 크고, 28보다 작거나 같은 소수는 3개가 있다. (17,19, 23)

n이 주어졌을 때, n보다 크고, 2n보다 작거나 같은 소수의 개수를 구하는 프로그램을 작성하시오. 


2. 입력

입력은 여러 개의 테스트 케이스로 이루어져 있다. 각 케이스는 n을 포함하며, 한 줄로 이루어져 있다. (n ≤ 123456)

입력의 마지막에는 0이 주어진다.


3. 출력

각 테스트 케이스에 대해서, n보다 크고, 2n보다 작거나 같은 소수의 개수를 출력한다.




4. 풀이


1. 문제

M이상 N이하의 소수를 모두 출력하는 프로그램을 작성하시오.


2. 입력

첫째 줄에 자연수 M과 N이 빈 칸을 사이에 두고 주어진다. (1≤M≤N≤1,000,000)


3. 출력

한 줄에 하나씩, 증가하는 순서대로 소수를 출력한다.




4. 풀이




1. 문제

자연수 M과 N이 주어질 때 M이상 N이하의 자연수 중 소수인 것을 모두 골라 이들 소수의 합과 최소값을 찾는 프로그램을 작성하시오.

예를 들어 M=60, N=100인 경우 60이상 100이하의 자연수 중 소수는 61, 67, 71, 73, 79, 83, 89, 97 총 8개가 있으므로, 이들 소수의 합은 620이고, 최소값은 61이 된다.


2. 입력

입력의 첫째 줄에 M이, 둘째 줄에 N이 주어진다.

M과 N은 10,000이하의 자연수이며, M은 N보다 작거나 같다.


3. 출력

M이상 N이하의 자연수 중 소수인 것을 모두 찾아 첫째 줄에 그 합을, 둘째 줄에 그 중 최소값을 출력한다.  단, M이상 N이하의 자연수 중 소수가 없을 경우는 첫째 줄에 -1을 출력한다.


4. 풀이



1. 문제

주어진 수 N개 중에서 소수가 몇 개인지 찾아서 출력하는 프로그램을 작성하시오.


2. 입력

첫 줄에 수의 개수 N이 주어진다. N은 100이하이다. 다음으로 N개의 수가 주어지는데 수는 1,000 이하의 자연수이다.


3. 출력

주어진 수들 중 소수의 개수를 출력한다.



4. 풀이




1. 문제

다솜이는 은진이의 옆집에 새로 이사왔다. 다솜이는 자기 방 번호를 예쁜 플라스틱 숫자로 문에 붙이려고 한다.

다솜이의 옆집에서는 플라스틱 숫자를 한 세트로 판다. 한 세트에는 0번부터 9번까지 숫자가 하나씩 들어있다. 다솜이의 방 번호가 주어졌을 때, 필요한 세트의 개수의 최소값을 출력하시오. (6은 9를 뒤집어서 이용할 수 있고, 9는 6을 뒤집어서 이용할 수 있다.)


2. 입력

첫째 줄에 다솜이의 방 번호 N이 주어진다. N은 1,000,000보다 작거나 같은 자연수 또는 0이다.


3. 출력

첫째 줄에 필요한 세트의 개수를 출력한다.




4. 풀이




1. 문제

평소 반상회에 참석하는 것을 좋아하는 주희는 이번 기회에 부녀회장이 되고 싶어 각 층의 사람들을 불러 모아 반상회를 주최하려고 한다.

이 아파트에 거주를 하려면 조건이 있는데, “a 층의 b 호에 살려면 자신의 아래(a-1)층에 1호부터 b 호까지 사람들의 수의 합만큼 사람들을 데려와 살아야한다” 는 계약 조항을 꼭 지키고 들어와야 한다.

아파트에 비어있는 집은 없고 모든 거주민들이 이 계약 조건을 지키고 왔다고 가정 했을 때, 주어지는 양의 정수 k와 n에 대해 k층에 n호에는 몇 명이 살고 있나를 출력하라. 단, 아파트에는 0층부터 있고 각층에는 1호부터 있으며, 0층에 i호에는 i명이 산다.


2. 입력

첫 번째 줄에 Test case의 수 T가 주어진다. 그리고 각각의 케이스마다 입력으로 첫 번째 줄에 정수 k, 두 번째 줄에 정수 n이 주어진다.

(1 <= k <= 14, 1 <= n <= 14)


3. 출력

각각의 Test case에 대해서 해당 집에 거주민 수를 출력하라.





4. 풀이


1. 문제

ACM 호텔 매니저 지우는 손님이 도착하는 대로 빈 방을 배정하고 있다. 고객 설문조사에 따르면 손님들은 호텔 정문으로부터 걸어서 가장 짧은 거리에 있는 방을 선호한다고 한다. 여러분은 지우를 도와 줄 프로그램을 작성하고자 한다. 즉 설문조사 결과 대로 호텔 정문으로부터 걷는 거리가 가장 짧도록 방을 배정하는 프로그램을 작성하고자 한다.

문제를 단순화하기 위해서 호텔은 직사각형 모양이라고 가정하자. 각 층에 W 개의 방이 있는 H 층 건물이라고 가정하자 (1 ≤ H, W ≤ 99). 그리고 엘리베이터는 가장 왼쪽에 있다고 가정하자(그림 1 참고). 이런 형태의 호텔을 H × W 형태 호텔이라고 부른다. 호텔 정문은 일층 엘리베이터 바로 앞에 있는데, 정문에서 엘리베이터까지의 거리는 무시한다. 또 모든 인접한 두 방 사이의 거리는 같은 거리(거리 1)라고 가정하고 호텔의 정면 쪽에만 방이 있다고 가정한다.

그림 1. H = 6 이고 W = 12 인 H × W 호텔을 간략하게 나타낸 그림

방 번호는 YXX 나 YYXX 형태인데 여기서 Y 나 YY 는 층 수를 나타내고 XX 는 엘리베이터에서부터 세었을 때의 번호를 나타낸다. 즉, 그림 1 에서 빗금으로 표시한 방은 305 호가 된다.

손님은 엘리베이터를 타고 이동하는 거리는 신경 쓰지 않는다. 다만 걷는 거리가 같을 때에는 아래층의 방을 더 선호한다. 예를 들면 102 호 방보다는 301 호 방을 더 선호하는데, 102 호는 거리 2 만큼 걸어야 하지만 301 호는 거리 1 만큼만 걸으면 되기 때문이다. 같은 이유로 102 호보다 2101 호를 더 선호한다.

여러분이 작성할 프로그램은 초기에 모든 방이 비어있다고 가정하에 이 정책에 따라 N 번째로 도착한 손님에게 배정될 방 번호를 계산하는 프로그램이다. 첫 번째 손님은 101 호, 두 번째 손님은 201 호 등과 같이 배정한다. 그림 1 의 경우를 예로 들면, H = 6이므로 10 번째 손님은 402 호에 배정해야 한다.


2. 입력

프로그램은 표준 입력에서 입력 데이터를 받는다. 프로그램의 입력은 T 개의 테스트 데이터로 이루어져 있는데 T 는 입력의 맨 첫 줄에 주어진다. 각 테스트 데이터는 한 행으로서 H, W, N, 세 정수를 포함하고 있으며 각각 호텔의 층 수, 각 층의 방 수, 몇 번째 손님인지를 나타낸다(1 ≤ H, W ≤ 99, 1 ≤ N ≤ H × W). 


3. 출력

프로그램은 표준 출력에 출력한다. 각 테스트 데이터마다 정확히 한 행을 출력하는데, 내용은 N 번째 손님에게 배정되어야 하는 방 번호를 출력한다.



4. 풀이




1. 문제

우현이는 어린 시절, 지구 외의 다른 행성에서도 인류들이 살아갈 수 있는 미래가 오리라 믿었다. 그리고 그가 지구라는 세상에 발을 내려 놓은 지 23년이 지난 지금, 세계 최연소 ASNA 우주 비행사가 되어 새로운 세계에 발을 내려 놓는 영광의 순간을 기다리고 있다.

그가 탑승하게 될 우주선은 Alpha Centauri라는 새로운 인류의 보금자리를 개척하기 위한 대규모 생활 유지 시스템을 탑재하고 있기 때문에, 그 크기와 질량이 엄청난 이유로 최신기술력을 총 동원하여 개발한 공간이동 장치를 탑재하였다. 하지만 이 공간이동 장치는 이동 거리를 급격하게 늘릴 경우 기계에 심각한 결함이 발생하는 단점이 있어서, 이전 작동시기에 k광년을 이동하였을 때는 k-1 , k 혹은 k+1 광년만을 다시 이동할 수 있다. 예를 들어, 이 장치를 처음 작동시킬 경우 -1 , 0 , 1 광년을 이론상 이동할 수 있으나 사실상 음수 혹은 0 거리만큼의 이동은 의미가 없으므로 1 광년을 이동할 수 있으며, 그 다음에는 0 , 1 , 2 광년을 이동할 수 있는 것이다. ( 여기서 다시 2광년을 이동한다면 다음 시기엔 1, 2, 3 광년을 이동할 수 있다. )

김우현은 공간이동 장치 작동시의 에너지 소모가 크다는 점을 잘 알고 있기 때문에 x지점에서 y지점을 향해 최소한의 작동 횟수로 이동하려 한다. 하지만 y지점에 도착해서도 공간 이동장치의 안전성을 위하여 y지점에 도착하기 바로 직전의 이동거리는 반드시 1광년으로 하려 한다.

김우현을 위해 x지점부터 정확히 y지점으로 이동하는데 필요한 공간 이동 장치 작동 횟수의 최소값을 구하는 프로그램을 작성하라.


2. 입력

입력의 첫 줄에는 테스트케이스의 개수 T가 주어진다. 각각의 테스트 케이스에 대해 현재 위치 x 와 목표 위치 y 가 정수로 주어지며, x는 항상 y보다 작은 값을 갖는다. ( 0 ≤ x < y < 231)


3. 출력

각 테스트 케이스에 대해 x지점으로부터 y지점까지 정확히 도달하는데 필요한 최소한의 공간이동 장치 작동 회수를 출력한다.




4. 풀이

처음에는 재귀함수를 써서 더해지는 과정 하나 하나를 다 카운트 하는 방식으로 코드를 짰는데 메모리가 부족했는지 런타임 에러가 떠서 숫자의 규칙을 찾고 그 규칙 값을 반환하는 함수를 만들어 코드를 짜서 풀었습니다.





+ Recent posts